全國

熱門城市 | 全國 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內(nèi)蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關(guān)注高考網(wǎng)公眾號

    (www_gaokao_com)
    了解更多高考資訊

首頁 > 高考總復(fù)習(xí) > 高考數(shù)學(xué)復(fù)習(xí)方法 > 2011年高考二輪數(shù)學(xué)考點突破復(fù)習(xí):數(shù)學(xué)思想方法

2011年高考二輪數(shù)學(xué)考點突破復(fù)習(xí):數(shù)學(xué)思想方法

2011-02-16 11:18:51中學(xué)學(xué)科網(wǎng)

2011年高考二輪數(shù)學(xué)考點突破復(fù)習(xí):數(shù)學(xué)思想方法

  函數(shù)思想,是指用函數(shù)的概念和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題.方程思想,是從問題中的數(shù)量關(guān)系入手,運(yùn)用數(shù)學(xué)語言將問題中的條件轉(zhuǎn)化為數(shù)學(xué)模型(方程、不等式、或方程與不等式的混合組),然后通過解方程(組)或不等式(組)來使問題獲解.有時,還通過函數(shù)與方程的互相轉(zhuǎn)化、接軌,達(dá)到解決問題的目的.函數(shù)與方程是兩個不同的概念,但它們之間有著密切的聯(lián)系,方程f(x)=0的解就是函數(shù)y=f(x)的圖象與x軸的交點的橫坐標(biāo).
  函數(shù)是高中數(shù)學(xué)的重要內(nèi)容之一,其理論和應(yīng)用涉及各個方面,是貫穿整個高中數(shù)學(xué)的一條主線.這里所說的函數(shù)思想具體表現(xiàn)為:運(yùn)用函數(shù)的有關(guān)性質(zhì),解決函數(shù)的某些問題;以運(yùn)動和變化的觀點分析和研究具體問題中的數(shù)學(xué)關(guān)系,通過函數(shù)的形式把這種關(guān)系表示出來并加以研究,從而使問題獲得解決;對于一些從形式上看是非函數(shù)的問題,經(jīng)過適當(dāng)?shù)臄?shù)學(xué)變換或構(gòu)造,使這一非函數(shù)的問題轉(zhuǎn)化為函數(shù)的形式,并運(yùn)用函數(shù)的有關(guān)概念和性質(zhì)來處理這一問題,進(jìn)而使原數(shù)學(xué)問題得到順利地解決.尤其是一些方程和不等式方面的問題,可通過構(gòu)造函數(shù)很好的處理.
  方程思想就是分析數(shù)學(xué)問題中的變量間的等量關(guān)系,從而建立方程或方程組,通過解方程或方程組,或者運(yùn)用方程的性質(zhì)去分析、轉(zhuǎn)化問題,使問題獲得解決.尤其是對于一些從形式上看是非方程的問題,經(jīng)過一定的數(shù)學(xué)變換或構(gòu)造,使這一非方程的問題轉(zhuǎn)化為方程的形式,并運(yùn)用方程的有關(guān)性質(zhì)來處理這一問題,進(jìn)而使原數(shù)學(xué)問題得到解決.
  函數(shù)與方程的思想在解題中的應(yīng)用十分廣泛,主要有以下幾方面:
 

    請下載附件:
    2011年高考二輪數(shù)學(xué)考點突破復(fù)習(xí):數(shù)學(xué)思想方法
    2011年高考二輪數(shù)學(xué)考點突破復(fù)習(xí):數(shù)學(xué)思想方法 本地下載New!

[標(biāo)簽:數(shù)學(xué) 復(fù)習(xí) 高考]

分享:

高考院校庫(挑大學(xué)·選專業(yè),一步到位。

高考院校庫(挑大學(xué)·選專業(yè),一步到位!)

高校分?jǐn)?shù)線

專業(yè)分?jǐn)?shù)線

日期查詢
  • 歡迎掃描二維碼
    關(guān)注高考網(wǎng)微信
    ID:gaokao_com

  • 👇掃描免費(fèi)領(lǐng)
    近十年高考真題匯總
    備考、選科和專業(yè)解讀
    關(guān)注高考網(wǎng)官方服務(wù)號