2020高考數(shù)學復習方法:50種快速做題方法匯總
2019-12-31 10:22:45高考網整理
1 . 適用條件
[直線過焦點],必有ecosA=(x-1)/(x+1),其中A為直線與焦點所在軸夾角,是銳角。x為分離比,必須大于1。
注:上述公式適合一切圓錐曲線。如果焦點內分(指的是焦點在所截線段上),用該公式;如果外分(焦點在所截線段延長線上),右邊為(x+1)/(x-1),其他不變。
2 . 函數(shù)的周期性問題(記憶三個)
(1)若f(x)=-f(x+k),則T=2k;
(2)若f(x)=m/(x+k)(m不為0),則T=2k;
(3)若f(x)=f(x+k)+f(x-k),則T=6k。
注意點:a.周期函數(shù),周期必無限b.周期函數(shù)未必存在最小周期,如:常數(shù)函數(shù)。c.周期函數(shù)加周期函數(shù)未必是周期函數(shù),如:y=sinxy=sin派x相加不是周期函數(shù)。
3 . 關于對稱問題(無數(shù)人搞不懂的問題)總結如下
(1)若在R上(下同)滿足:f(a+x)=f(b-x)恒成立,對稱軸為x=(a+b)/2
(2)函數(shù)y=f(a+x)與y=f(b-x)的圖像關于x=(b-a)/2對稱;
(3)若f(a+x)+f(a-x)=2b,則f(x)圖像關于(a,b)中心對稱
4 . 函數(shù)奇偶性
(1)對于屬于R上的奇函數(shù)有f(0)=0;
(2)對于含參函數(shù),奇函數(shù)沒有偶次方項,偶函數(shù)沒有奇次方項
(3)奇偶性作用不大,一般用于選擇填空
5 . 數(shù)列爆強定律
(1)等差數(shù)列中:S奇=na中,例如S13=13a7(13和7為下角標);
(2)等差數(shù)列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差
(3)等比數(shù)列中,上述2中各項在公比不為負一時成等比,在q=-1時,未必成立
(4)等比數(shù)列爆強公式:S(n+m)=S(m)+q2mS(n)可以迅速求q
6 . 數(shù)列的終極利器,特征根方程
首先介紹公式:對于an+1=pan+q(n+1為下角標,n為下角標),
a1已知,那么特征根x=q/(1-p),則數(shù)列通項公式為an=(a1-x)p2(n-1)+x,這是一階特征根方程的運用。
二階有點麻煩,且不常用。所以不贅述。希望同學們牢記上述公式。當然這種類型的數(shù)列可以構造(兩邊同時加數(shù))
7 . 函數(shù)詳解補充
1、復合函數(shù)奇偶性:內偶則偶,內奇同外
2、復合函數(shù)單調性:同增異減
3、重點知識關于三次函數(shù):恐怕沒有多少人知道三次函數(shù)曲線其實是中心對稱圖形。
它有一個對稱中心,求法為二階導后導數(shù)為0,根x即為中心橫坐標,縱坐標可以用x帶入原函數(shù)界定。另外,必有唯一一條過該中心的直線與兩旁相切。
8 . 常用數(shù)列bn=n×(22n)求和Sn=(n-1)×(22(n+1))+2記憶方法
前面減去一個1,后面加一個,再整體加一個2
9 . 適用于標準方程(焦點在x軸)爆強公式
k橢=-{(b2)xo}/{(a2)yo}k雙={(b2)xo}/{(a2)yo}k拋=p/yo
注:(xo,yo)均為直線過圓錐曲線所截段的中點。
10 . 強烈推薦一個兩直線垂直或平行的必殺技
已知直線L1:a1x+b1y+c1=0直線L2:a2x+b2y+c2=0
若它們垂直:(充要條件)a1a2+b1b2=0;
若它們平行:(充要條件)a1b2=a2b1且a1c2≠a2c1[
這個條件為了防止兩直線重合)
注:以上兩公式避免了斜率是否存在的麻煩,直接必殺!
11 . 經典中的經典
相信鄰項相消大家都知道。
下面看隔項相消:
對于Sn=1/(1×3)+1/(2×4)+1/(3×5)+…+1/[n(n+2)]=1/2[1+1/2-1/(n+1)-1/(n+2)]
注:隔項相加保留四項,即首兩項,尾兩項。自己把式子寫在草稿紙上,那樣看起來會很清爽以及整潔!
12 . 爆強△面積公式
S=1/2∣mq-np∣其中向量AB=(m,n),向量BC=(p,q)
注:這個公式可以解決已知三角形三點坐標求面積的問題
13 . 你知道嗎?空間立體幾何中:以下命題均錯
(1)空間中不同三點確定一個平面
(2)垂直同一直線的兩直線平行
(3)兩組對邊分別相等的四邊形是平行四邊形
(4)如果一條直線與平面內無數(shù)條直線垂直,則直線垂直平面
(5)有兩個面互相平行,其余各面都是平行四邊形的幾何體是棱柱
(6)有一個面是多邊形,其余各面都是三角形的幾何體都是棱錐
注:對初中生不適用。
14 . 一個小知識點
所有棱長均相等的棱錐可以是三、四、五棱錐。
15 . 求f(x)=∣x-1∣+∣x-2∣+∣x-3∣+…+∣x-n∣(n為正整數(shù))的最小值
答案為:當n為奇數(shù),最小值為(n2-1)/4,在x=(n+1)/2時取到;
當n為偶數(shù)時,最小值為n2/4,在x=n/2或n/2+1時取到。
16 . √〔(a2+b2)〕/2≥(a+b)/2≥√ab≥2ab/(a+b)(a、b為正數(shù),是統(tǒng)一定義域)
17 . 橢圓中焦點三角形面積公式
S=b2tan(A/2)在雙曲線中:S=b2/tan(A/2)
說明:適用于焦點在x軸,且標準的圓錐曲線。A為兩焦半徑夾角。
18 . 爆強定理
空間向量三公式解決所有題目:cosA=|{向量a.向量b}/[向量a的模×向量b的模]
(1)A為線線夾角
(2)A為線面夾角(但是公式中cos換成sin)
(3)A為面面夾角注:以上角范圍均為[0,派/2]。
19 . 爆強公式
12+22+32+…+n2=1/6(n)(n+1)(2n+1);123+223+323+…+n23=1/4(n2)(n+1)2
20 . 爆強切線方程記憶方法
寫成對稱形式,換一個x,換一個y
舉例說明:對于y2=2px可以寫成y×y=px+px
再把(xo,yo)帶入其中一個得:y×yo=pxo+px
21 . 爆強定理
(a+b+c)2n的展開式[合并之后]的項數(shù)為:Cn+22,n+2在下,2在上
22 . 轉化思想
切線長l=√(d2-r2)d表示圓外一點到圓心得距離,r為圓半徑,而d最小為圓心到直線的距離。
23 . 對于y2=2px
過焦點的互相垂直的兩弦AB、CD,它們的和最小為8p。
爆強定理的證明:對于y2=2px,設過焦點的弦傾斜角為A
那么弦長可表示為2p/〔(sinA)2〕,所以與之垂直的弦長為2p/[(cosA)2]
所以求和再據(jù)三角知識可知。
(題目的意思就是弦AB過焦點,CD過焦點,且AB垂直于CD)
24 . 關于一個重要絕對值不等式的介紹爆強
∣|a|-|b|∣≤∣a±b∣≤∣a∣+∣b∣
25 . 關于解決證明含ln的不等式的一種思路
舉例說明:證明1+1/2+1/3+…+1/n>ln(n+1)
把左邊看成是1/n求和,右邊看成是Sn。
解:令an=1/n,令Sn=ln(n+1),則bn=ln(n+1)-lnn,
那么只需證an>bn即可,根據(jù)定積分知識畫出y=1/x的圖。
an=1×1/n=矩形面積>曲線下面積=bn。當然前面要證明1>ln2。
注:僅供有能力的童鞋參考!!另外對于這種方法可以推廣,就是把左邊、右邊看成是數(shù)列求和,證面積大小即可。說明:前提是含ln。
26 . 爆強簡潔公式
向量a在向量b上的射影是:〔向量a×向量b的數(shù)量積〕/[向量b的模]。
記憶方法:在哪投影除以哪個的模
27 . 說明一個易錯點
若f(x+a)[a任意]為奇函數(shù),那么得到的結論是f(x+a)=-f(-x+a)〔等式右邊不是-f(-x-a)〕
同理如果f(x+a)為偶函數(shù),可得f(x+a)=f(-x+a) 牢記
28 . 離心率爆強公式
e=sinA/(sinM+sinN)
注:P為橢圓上一點,其中A為角F1PF2,兩腰角為M,N
29 . 橢圓的參數(shù)方程也是一個很好的東西,它可以解決一些最值問題。
比如x2/4+y2=1求z=x+y的最值。
解:令x=2cosay=sina再利用三角有界即可。比你去=0不知道快多少倍!
30 . 僅供有能力的童鞋參考的爆強公式
和差化積
sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]
積化和差
sinαsinβ=[cos(α-β)-cos(α+β)]/2cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2
31 . 爆強定理
直觀圖的面積是原圖的√2/4倍。
32 . 三角形垂心爆強定理
(1)向量OH=向量OA+向量OB+向量OC(O為三角形外心,H為垂心)
(2)若三角形的三個頂點都在函數(shù)y=1/x的圖象上,則它的垂心也在這個函數(shù)圖象上。
33 . 維維安尼定理(不是很重要(僅供娛樂))
正三角形內(或邊界上)任一點到三邊的距離之和為定值,這定值等于該三角形的高。
34 . 爆強思路
如果出現(xiàn)兩根之積x1x2=m,兩根之和x1+x2=n
我們應當形成一種思路,那就是返回去構造一個二次函數(shù)
再利用△大于等于0,可以得到m、n范圍。
35 . 常用結論
過(2p,0)的直線交拋物線y2=2px于A、B兩點。
O為原點,連接AO.BO。必有角AOB=90度
36 . 爆強公式
ln(x+1)≤x(x>-1)該式能有效解決不等式的證明問題。
舉例說明:ln(1/(22)+1)+ln(1/(32)+1)+…+ln(1/(n2)+1)<1(n≥2)
證明如下:令x=1/(n2),根據(jù)ln(x+1)≤x有左右累和右邊
再放縮得:左和<1-1/n<1證畢!
37 . 函數(shù)y=(sinx)/x是偶函數(shù)
在(0,派)上它單調遞減,(-派,0)上單調遞增。
利用上述性質可以比較大小。
38 . 函數(shù)
y=(lnx)/x在(0,e)上單調遞增,在(e,+無窮)上單調遞減。
另外y=x2(1/x)與該函數(shù)的單調性一致。
39 . 幾個數(shù)學易錯點
(1)f`(x)<0是函數(shù)在定義域內單調遞減的充分不必要條件
(2)研究函數(shù)奇偶性時,忽略最開始的也是最重要的一步:考慮定義域是否關于原點對稱
(3)不等式的運用過程中,千萬要考慮"="號是否取到
(4)研究數(shù)列問題不考慮分項,就是說有時第一項并不符合通項公式,所以應當極度注意:數(shù)列問題一定要考慮是否需要分項!
40 . 提高計算能力五步曲
(1)扔掉計算器
(2)仔細審題(提倡看題慢,解題快),要知道沒有看清楚題目,你算多少都沒用
(3)熟記常用數(shù)據(jù),掌握一些速算技
(4)加強心算、估算能力
(5)檢驗
41 . 一個美妙的公式
已知三角形中AB=a,AC=b,O為三角形的外心,
則向量AO×向量BC(即數(shù)量積)=(1/2)[b2-a2]
證明:過O作BC垂線,轉化到已知邊上
42 . 函數(shù)
、俸瘮(shù)單調性的含義:大多數(shù)同學都知道若函數(shù)在區(qū)間D上單調,則函數(shù)值隨著自變量的增大(減小)而增大(減小),但有些意思可能有些人還不是很清楚,若函數(shù)在D上單調,則函數(shù)必連續(xù)(分段函數(shù)另當別論)這也說明了為什么不能說y=tanx在定義域內單調遞增,因為它的圖像被無窮多條漸近線擋住,換而言之,不連續(xù).還有,如果函數(shù)在D上單調,則函數(shù)在D上y與x一一對應.這個可以用來解一些方程.至于例子不舉了
、诤瘮(shù)周期性:這里主要總結一些函數(shù)方程式所要表達的周期設f(x)為R上的函數(shù),對任意x∈R
(1)f(a±x)=f(b±x)T=(b-a)(加絕對值,下同)
(2)f(a±x)=-f(b±x)T=2(b-a)
(3)f(x-a)+f(x+a)=f(x)T=6a
(4)設T≠0,有f(x+T)=M[f(x)]其中M(x)滿足M[M(x)]=x,且M(x)≠x則函數(shù)的周期為2
43 . 奇偶函數(shù)概念的推廣
(1)對于函數(shù)f(x),若存在常數(shù)a,使得f(a-x)=f(a+x),則稱f(x)為廣義(Ⅰ)型偶函數(shù),且當有兩個相異實數(shù)a,b滿足時,f(x)為周期函數(shù)T=2(b-a)
(2)若f(a-x)=-f(a+x),則f(x)是廣義(Ⅰ)型奇函數(shù),當有兩個相異實數(shù)a,b滿足時,f(x)為周期函數(shù)T=2(b-a)
(3)有兩個實數(shù)a,b滿足廣義奇偶函數(shù)的方程式時,就稱f(x)是廣義(Ⅱ)型的奇,偶函數(shù).且若f(x)是廣義(Ⅱ)型偶函數(shù),那么當f在[a+b/2,∞)上為增函數(shù)時,有f(x1)<f(x2)等價于絕對值x1-(a+b p="" <="" 2)<絕對值x2-(a+b)="">
44 . 函數(shù)對稱性
(1)若f(x)滿足f(a+x)+f(b-x)=c則函數(shù)關于(a+b/2,c/2)成中心對稱
(2)若f(x)滿足f(a+x)=f(b-x)則函數(shù)關于直線x=a+b/2成軸對稱
柯西函數(shù)方程:若f(x)連續(xù)或單調
(1)若f(xy)=f(x)+f(y)(x>0,y>0),則f(x)=㏒ax
(2)若f(xy)=f(x)f(y)(x>0,y>0),則f(x)=x2u(u由初值給出)
(3)f(x+y)=f(x)f(y)則f(x)=a2x
(4)若f(x+y)=f(x)+f(y)+kxy,則f(x)=ax2+bx(5)若f(x+y)+f(x-y)=2f(x),則f(x)=ax+b特別的若f(x)+f(y)=f(x+y),則f(x)=kx
45 . 與三角形有關的定理或結論中學數(shù)學平面幾何最基本的圖形就是三角形
、僬卸ɡ(我自己取的,因為不知道名字):在非Rt△中,有tanA+tanB+tanC=tanAtanBtanC
、谌我馊切紊溆岸ɡ(又稱第一余弦定理):
在△ABC中,
a=bcosC+ccosB;b=ccosA+acosC;c=acosB+bcosA
、廴我馊切蝺惹袌A半徑r=2S/a+b+c(S為面積),外接圓半徑應該都知道了吧
④梅涅勞斯定理:設A1,B1,C1分別是△ABC三邊BC,CA,AB所在直線的上的點,則A1,B1,C1共線的充要條件是CB1/B1A·BA1/A1C·AC1/C1B=1
44 . 易錯點
(1)函數(shù)的各類性質綜合運用不靈活,比如奇偶性與單調性常用來配合解決抽象函數(shù)不等式問題;
(2)三角函數(shù)恒等變換不清楚,誘導公式不迅捷。
45 . 易錯點
(3)忽略三角函數(shù)中的有界性,三角形中角度的限定,比如一個三角形中,不可能同時出現(xiàn)兩個角的正切值為負
(4)三角的平移變換不清晰,說明:由y=sinx變成y=sinwx的步驟是將橫坐標變成原來的1/∣w∣倍
46 . 易錯點
(5)數(shù)列求和中,常常使用的錯位相減總是粗心算錯
規(guī)避方法:在寫第二步時,提出公差,括號內等比數(shù)列求和,最后除掉系數(shù);
(6)數(shù)列中常用變形公式不清楚,如:an=1/[n(n+2)]的求和保留四項
47 . 易錯點
(7)數(shù)列未考慮a1是否符合根據(jù)sn-sn-1求得的通項公式;
(8)數(shù)列并不是簡單的全體實數(shù)函數(shù),即注意求導研究數(shù)列的最值問題過程中是否取到問題
48 . 易錯點
(9)向量的運算不完全等價于代數(shù)運算;
(10)在求向量的模運算過程中平方之后,忘記開方。
比如這種選擇題中常常出現(xiàn)2,√2的答案…,基本就是選√2,選2的就是因為沒有開方;
(11)復數(shù)的幾何意義不清晰
49 . 關于輔助角公式
asint+bcost=[√(a2+b2)]sin(t+m)其中tanm=b/a[條件:a>0]
說明:一些的同學習慣去考慮sinm或者cosm來確定m,個人覺得這樣太容易出錯
最好的方法是根據(jù)tanm確定m.(見上)。
舉例說明:sinx+√3cosx=2sin(x+m),
因為tanm=√3,所以m=60度,所以原式=2sin(x+60度)
50 . A、B為橢圓x2/a2+y2/b2=1上任意兩點。若OA垂直O(jiān)B,則有1/∣OA∣2+1/∣OB∣2=1/a2+1/b2
最新高考資訊、高考政策、考前準備、高考預測、志愿填報、錄取分數(shù)線等
高考時間線的全部重要節(jié)點
盡在"高考網"微信公眾號