高二數(shù)學(xué)學(xué)習(xí)方法八
2022-08-10 17:18:40高考網(wǎng)整理
一、不等式的基本性質(zhì):
注意:(1)特值法是判斷不等式命題是否成立的一種方法,此法尤其適用于不成立的命題。
(2)注意課本上的幾個(gè)性質(zhì),另外需要特別注意:
①若ab0,則 。即不等式兩邊同號(hào)時(shí),不等式兩邊取倒數(shù),不等號(hào)方向要改變。
、谌绻麑(duì)不等式兩邊同時(shí)乘以一個(gè)代數(shù)式,要注意它的正負(fù)號(hào),如果正負(fù)號(hào)未定,要注意分類討論。
③圖象法:利用有關(guān)函數(shù)的圖象(指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、二次函數(shù)、三角函數(shù)的圖象),直接比較大小。
、苤薪橹捣ǎ合劝岩容^的代數(shù)式與0比,與1比,然后再比較它們的大小
二、均值不等式:兩個(gè)數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
基本應(yīng)用:①放縮,變形;
、谇蠛瘮(shù)最值:注意:①一正二定三相等;②積定和最小,和定積最大。
常用的方法為:拆、湊、平方;
三、絕對(duì)值不等式:
注意:上述等號(hào)=成立的條件;
四、常用的基本不等式:
(1)比較法:作差比較:
作差比較的步驟:
、抛鞑睿簩(duì)要比較大小的兩個(gè)數(shù)(或式)作差。
⑵變形:對(duì)差進(jìn)行因式分解或配方成幾個(gè)數(shù)(或式)的完全平方和。
、桥袛嗖畹姆(hào):結(jié)合變形的結(jié)果及題設(shè)條件判斷差的符號(hào)。
注意:若兩個(gè)正數(shù)作差比較有困難,可以通過(guò)它們的平方差來(lái)比較大小。
。2)綜合法:由因?qū)Ч?br />
(3)分析法:執(zhí)果索因;静襟E:要證只需證,只需證
。4)反證法:正難則反。
。5)放縮法:將不等式一側(cè)適當(dāng)?shù)姆糯蠡蚩s小以達(dá)證題目的。
放縮法的方法有:
、盘砑踊蛏崛ヒ恍╉(xiàng),
、茖⒎肿踊蚍帜阜糯螅ɑ蚩s小)
、抢没静坏仁,
。6)換元法:換元的目的就是減少不等式中變量,以使問(wèn)題化難為易,化繁為簡(jiǎn),常用的換元有三角換元和代數(shù)換元。
。7)構(gòu)造法:通過(guò)構(gòu)造函數(shù)、方程、數(shù)列、向量或不等式來(lái)證明不等式;
相關(guān)推薦:
高二數(shù)學(xué)復(fù)習(xí)方法匯總
高二數(shù)學(xué)學(xué)習(xí)方法五
最新高考資訊、高考政策、考前準(zhǔn)備、志愿填報(bào)、錄取分?jǐn)?shù)線等
高考時(shí)間線的全部重要節(jié)點(diǎn)
盡在"高考網(wǎng)"微信公眾號(hào)